> Энциклопедический словарь Гранат, страница 137 > Гальванизм
Гальванизм
Гальванизм, отдел учения об электричестве.—Под этим несколько неопределенным термином понимают то, вообще, изложение способов возбуждения электрического тока, его свойств и действий, то лишь изложение того процесса получения тока, который ведет начало от Гальвани и Вольта и сводится к употреблению так. наз. гальванических элементов. Настоящая статья примыкает скорее ко второму, более узкому пониманию термина Г.
История Г. Итальян. анатом Каль-дани в 1756 г. заметил, что тело недавно убитой лягушки содрогается под действием электрического удара. В 1780 (по другим источникам в 1786 или 1789) году болонский медик Гальвани случайно заметил необыкновенную чувствительность известным образом препарированной лягушки к слабым электрическим разрядам. Лягушечий препарат Гальвани состоял из задних лапок, с которых снята кожа, и которые двумя нервами соединяются с несколькими позвонками (рисунок 1). Такой препарат лежал на столе, на котором находилась электростатическая машина. Когда один из помощников Гальвани случайно слегка прикоснулся острием скалпеля к нервам лягушки, то все мускулы лапок обнаружили судорожные сокращения; другой же заметил, что это происходило тогда, когда из кондуктора машины извлекалась искра.—В этом явлении имел место таип наз. возвратный удар. нерв вместе с проводником, соединяющим его с землей (лезвие скалпеля, тело экспериментатора), электризуется через влияние кондуктора машины. Как скоро из кондуктора извлекается искра и он разряжается, разложенное электричество препарата снова приходит в нейтральное состояние, действуя на нерв, как всякий элфктрич. разряд. Заинтересованный новым наблюдением, Гальвани стал производить дальнейшие опыты. Он захотел выяснить, произведет ли атмосферное электричество на лягушечий препарат такое же действие, как электричество машины. С этой целью он вешал на открытом воздухе препарированную лягушку во время грозы, соединяя ее металлической проволокой с землей: всякий раз, как сверкала молния, мускулы сильно сокращались. Наконец, Гальвани заметил, что иногда те же характерные содрогания обнаруживаются и в ясную погоду у лягушечьих лапок, заготовленных для опытов и привешенных к железной решетке балкона с помощью латунных крючков, воткнутых в позвоночный столб. Сначала он думал, что и здесь причиной являются изменения в электрическом состоянии атмосферы; но заметив, что сокращения появляются всякий раз, как устанавливается более тесное соприкосновение между крючком и решеткой, он стал повторять тот же опыт в закрытом помещении, при
чем клал лягушку на железную пластинку и прижимал к этой пластинке крючек. продетый через позвоночник. К его черезвычайному удивлению, явление судорожного сокращения мускулов при этом каждый раз повторялось. Он стал повторять этот опыт, разнообразя взятые металлы: результат был тот же самый; только при употреблении одних металлов сокращения совершались сильнее, чем при употреблении других. При замене же металла каким-нибудь изолятором сокращения не получалось. Далее оказалось, что два металла, соприкасающиеся с лягушечьим препаратом, не должны необходимо быть в соприкосновении друг с другом; достаточно включить между ними какой-нибудь проводник, например, человека или „цепь“ из нескольких людей, взявшихся за руки.—В этом состоят главные факты, опубликованные Гальвана в 1791 году. Мы видим, что он первый констатировал два факта первостепенной важности: 1) что комбинация из двух металлов и лягушечьяго препарата дает электрическое действие; 2) что сила этого действия зависит от рода взятых металлов. Совершенно очевидно, что вышеупомянутая комбинация составляет своеобразный гальванический элемент; поэтому является вполне законным, что область физики, в которой рассматривается действие элементов, носит имя, напоминающее о Гальвани. Что касается упомянутого в начале статьи оиьита Каль-дани, то он сам по себе имеет малое значение для физики; в руках Гальвани это явление сыграло роль лишь постольку, поскольку нерв лягушки являлся здесь чувствительным гальваноскопом.—Итак опытам Гальвани принадлежит основное значение в истории науки, но этого нельзя сказать про данное им теоретическое объяснение этих опытов. Гальвани полагал, что источником электричества в его опыте с животным препаратом и двумя металлами является животный препарат, и что таким образом установлено существование особого животного электричества, нерв и мускул лягушки онуподоблял двум обкладкам Лейденской банки, а металлам приписывал лишь несущественную роль разрядника. Это ошибочное воззрение Гальвани нашло себе критику в работах Вольта, относящихся к 1792—1796 гг. Обратив надлежащее внимание на ту роль, которую в описываемых опытах играет присутствие разнородных металлов, Вольта выставил гипотезу, согласно которой электрическое возбуждение обусловлено здесь не присутствием животного организма (играющого лишь пассивную роль), а соприкосновением разнородных металлов, как между собою, так и с жидкостями тела лягушки. Вольта первый высказал также мысль, что в опыте Гальвани мы имеем длящееся движение электрич. (постоянный электрич. ток). В дальнейшем Вольта дал черезвычайно широкое обобщение наблюдения, сделанного Гальвани. Устанавливая разделение проводников электричества на два класса, он отнес к проводникам первого класса все металлы, соединения металлов с кислородом и серой, а также уголь; к проводникам второго класса — различные водные растворы (по современной терминологии—электролиты). Различие между обоими классами характеризуется следующим, установленным Вольта, экспериментальным законом: электрический ток возникает всякий раз, как составляется замкнутая цепь по крайней мере из трех проводников, причем по крайней мере один из них должен принадлежать ко второму классу. Таким образом возможны 3 простейших случая: 1) два различных проводника первого класса соприкасаются с проводником второго класса (частный случай—комбинация Гальвани из двух металлов и лягушки); 2) один проводник первого класса соприкасается с двумя различными проводниками второго класса; 3) соприкасаются три различных проводника второго класса. В каждом из трех перечисленных случаев замкнутой цепи имеются три места соприкосновения разнородных тел, служащия ареной так называемым „электродвижущих силъ“; направление и величина этих электродвижущих сил обусловливается природой соприкасающихся тел; от относительной величины и направления их зависит направление движения электричества в цепи.—Вольта открыл также ряд других важных фактов, а именно: вместо двух различных металлов (смотрите указ. выше случай) можно пользоваться для устройства цепи одним металлом, если только его концы в каком-нибудь отношении физически различны, например, обладают различною степенью твердости, или один окислен более другого (особенно деятельной оказалась комбинация из чистого и окисленного свинца); также вместо двух различных жидкостей можно пользоваться одною в двух различных концентрациях (это—т. наз. концентрационный элемент); если цепь состоит из нескольких металлов и нескольких жидкостей, то на силу электрического действия оказывают большое влияние размеры поверхности соприкосновения какого-нибудь металла с жидкостью или двух жидкостей между собой; напротив, величина поверхности соприкосновения двух металлов не имеет значения (отсюда Вольта правильно заключил, что электропроводность металлов во много раз превышает электропроводность жидкостей). Эти наблюдения были сделаны все еще с помощью лягушечьяго препарата. Но в 1796 — 97 гг. Вольта стал пользоваться для констатирования электрического состояния тел электроскопическим методом; тут ему удалось экспериментально подтвердить свое прежнее предположение об электризации проводников при простом соприкосновении. Так как эта электризация весьма слаба, то обнаружение ея является довольно тонким опытом.
Один из простейших способов обнаружить электризацию при соприкосновении (контакте) двух металлов состоит в следующем. Цинковая и медная пластинки, снабженные изолирующими ручками, отделены друг от друга изолятором—тонким листочком слюды или слоем лака—и, следовательно, представляют конденсатор.Соединим обе пластинкидруг с другом посредством медной проволоки (при чем оне получат определенную разность электрических потенциалов и, вследствие значительной емкости образуемого ими конденсатора, будут содержать сравнительно большое количество электричества); затем уберем эту соединительную проволоку и отнимем пластинки одну от другой; при этом, вследствие уменьшения емкости, значительно возрастет разность потенциалов между пластинками, и с помощью электроскопа не трудно будет убедиться в их электрическом состоянии: цинковая пластинка обнаружит положительную электризацию, медная — отрицательную. (Что касается развивающейся в опыте разности потенциалов между пластинками во время их соприкосновения, то она оказывается зависящей только от природы соприкасающихся тел, но не зависит от их размеров, формы, а равно и от величины поверхности соприкосновения). Делая опыты над различными металлами, Вольта нашел, что все они могут быть расположены в ряд (так называемым ряд Вольта), обладающий тем свойством, что при соприкосновении любых двух металлов из этого ряда тот, который стоит ближе к началу ряда, электризуется положительно, а другой—отрицательно, и чем дальше друг от друга помещаются два члена ряда, тем сильнее электризация. У разных исследователей порядок членов в этом ряду оказывается не совсем одинаковым, что может объясняться различной степенью чистоты проводника, неодинаковым физическим состоянием поверхности и так далее Если ограничиться наиболее безспорными данными, то получим ряд Вольта в след. виде:
+
Цинк
Свинец
Железо
Медь
Серебро
Золото
Платина
Уголь
Любопытно, что различные вещества идут здесь в порядке убывающей окисляемости или (по отношению к металлам) в порядке возрастающого благородства. Пользуясь понятием контактной разности потенциалов, можно изложить указанный выше закон Вольта в более общей и более точной форме таким образом: представим себе несколько проводников первого класса А, В, С, L, М, соединенных последовательно друг с другом в (незамкнутую) цепь. В таком случае разность потенциалов между двумя крайними проводниками А и М будет такая же, как если бы оба этипроводника были в непосредственном соприкосновении. Если оба проводника, находящиеся на концах цепи, имеют тождественную природу, то концы цепи имеют один и тот же потенциал; замкнув такую цепь, мы не получим никакого течения электричества (при чем предполагается, что все контакты имеют одинаковую температуру). Иначе обстоит дело, если в цепи находятся проводники второго класса: в этом случае при за-минутой цепи (как уже было сказано) получается течение электричества, а при разомкнутой цепи молено неопределенно увеличивать разность потенциалов между ея концами посредством увеличения числа ея членов. Это осуществляется в т. н. Вольтовом столбе, кот. был изобретен Вольта в конце 1799 г. и представляет первую по времени гальваническ. батарею. Вольтов Рисунок 2. столб (рисунок 2) состоял из ряда серебряных (илижемедных), цинковых и суконных (или кояеаных, папковых) кружочков, причем последние слегка увлалшялись щелочным раствором или просто водой (не дистиллированной,
след. содержащей соли). Кружочки складывались в таком порядке: медь—цинк—вод а— медь — цинк-вода—медь—и так далее Одновременно со столбом Вольта изобрел батарей из банок (рисунок 3); в каждую банку
Рисунок 3.
наливалась теплая вода или соляной раствор и опускалась серебряная (С) и цинковая (Z) пластинки, которые не должны были касаться друг друга. Каждая цинковая пластинка одной из банок соединялась металлическим крючком с серебряною пластинкою следующей банки. От этих приборов Вольта получил довольно сильные физиологические действия на человеческий организм.
Изобретение гальванической батареи составляет кульминационную точку в трудах великих деятелей гальванизма. После этого открытия следовал, как бы с неизбежностью, ряд других, также необыкновенно важных: открытие электролиза (Карлейль и Никольсон, 1800), электрической („вольтовой“, см.) дуги (Петров, 1803,и независимо от него Дэви, не позднее 1813), электромагнитизма и электродинамики (Эрстед, 1820; Фарадей, 1821; Ампер, 1821), термоэлектричества (Зебек, 1821); изобретение электромагнита (Стерджен, 1825); установление Омом своего закона (1827)— до открытия индукции токов (Фарадей, 1831), которое можно считать за начало новой великой эпохи.